Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Clin Med ; 12(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38002670

RESUMO

The study is to evaluate incorporation of a bone-anterior cruciate ligament-bone (B-ACL-B) allograft in anterior cruciate ligament (ACL) reconstruction in a rabbit model. A total of 61 New Zealand white rabbits were used, with 23 donor rabbits for harvesting B-ACL-B allografts and 38 recipient rabbits undergoing unilateral ACL reconstruction with B-ACL-B allograft. Animals were euthanized for biomechanical testing, micro-computed tomography examination, histological analysis, multi-photon microscopy and transmission electron microscopy testing at 2, 4 and 8 weeks after surgery. Gross inspection and radiographs confirmed the intact ACL allograft in the proper anatomic position. Progressive healing occurred between the bone block and the bone tunnel as demonstrated by a gradual increase in average bone volume fraction and total mineral density at 4 and 8 weeks. Histological analysis showed new bone formation at the bone block-tunnel interface, with maintenance of the native ACL enthesis. Ultrastructural analysis demonstrated the maintenance of overall collagen matrix alignment, while there was repopulation with smaller diameter collagen fibrils. There was no significant difference between 4 and 8 weeks in mean failure force (p = 0.39) or stiffness (p = 0.15) for the B-ACL-B allografts. This study demonstrates the restoration of the normal anatomy of the ACL and progressive graft incorporation and remodeling using a B-ACL-B allograft for ACL reconstruction in the rabbit knee.

2.
Allergol Immunopathol (Madr) ; 51(6): 16-22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937491

RESUMO

OBJECTIVE: To investigate the possible role of La ribonucleoprotein 7 (LARP7) in psoriasis through a mouse model and uncover its underlying mechanism. METHODS: The back skin of C57BL/6 mice was smeared with IMquimod (IMQ) cream for 7 days to induce psoriasis. Immunoblot kit was used to detect the deacetylase activity of SIRT1 (member of sirtuin family). Hematoxylin and eosin staining was used to assess the degree of psoriasis in mouse. Flow cytometry assays were performed to confirm effects on Th1/Th17 cell differentiation. Enzyme-linked-immunosorbent serologic assays were used to detect the level of secreted cytokines. RESULTS: LARP7 upregulated SIRT1 deacetylase activity. LARP7 alleviated psoriasis symptoms in mice by upregulating SIRT1 deacetylase activity. In addition, LARP7 regulated Th1/Th17 cell differentiation in psoriatic mice. We further found that LARP7 inhibited Th1/Th17 cytokine. CONCLUSION: LARP7 upregulated SIRT1 activity and inhibited Th1/Th17 cytokine response in psoriatic mice.


Assuntos
Citocinas , Psoríase , Animais , Camundongos , Imiquimode/farmacologia , Camundongos Endogâmicos C57BL , Psoríase/tratamento farmacológico , Sirtuína 1/genética , Células Th17
3.
Water Res ; 246: 120671, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804804

RESUMO

I- is a halogen species existing in natural waters, and the transformation of organic and inorganic iodine in natural and artificial processes would impact the quality of drinking water. Herein, it was found that Fe(VI) could oxidize organic and inorganic iodine to IO3-and simultaneously remove the resulted IO3- through Fe(III) particles. For the river water, wastewater treatment plant (WWTP) effluent, and shale gas wastewater treated by 5 mg/L of Fe(VI) (as Fe), around 63 %, 55 % and 71 % of total iodine (total-I) had been removed within 10 min, respectively. Fe(VI) was superior to coagulants in removing organic and inorganic iodine from the source water. Adsorption kinetic analysis suggested that the equilibrium adsorption amount of I- and IO3- were 11 and 10.1 µg/mg, respectively, and the maximum adsorption capacity of IO3- by Fe(VI) resulted Fe(III) particles was as high as 514.7 µg/mg. The heterogeneous transformation of Fe(VI) into Fe(III) effectively improved the interaction probability of IO3- with iron species. Density functional theory (DFT) calculation suggested that the IO3- was mainly adsorbed in the cavity (between the γ-FeOOH shell and γ-Fe2O3 core) of Fe(III) particles through electrostatic adsorption, van der Waals force and hydrogen bond. Fe(VI) treatment is effective for inhibiting the formation of iodinated disinfection by-products in chlor(am)inated source water.


Assuntos
Água Potável , Iodo , Poluentes Químicos da Água , Purificação da Água , Compostos Férricos/química , Adsorção , Cinética , Ferro/química , Oxirredução , Purificação da Água/métodos , Poluentes Químicos da Água/química
4.
BMC Cardiovasc Disord ; 23(1): 472, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735348

RESUMO

BACKGROUND: The prevalence of infections with multidrug-resistant organism (MDRO) pose great challenges for anti-infective therapy. Previous research on MDRO infections after cardiac surgery was limited. Therefore, understanding and mastering the clinical characteristics and risk predictors of MDRO infection after cardiac surgery is of great significance for standardized management of perioperative patients. METHODS: The medical records of adult patients with MDRO infection after cardiac surgery from January 2018 to October 2021 were collected, and patients were divided into MDR infection group (n = 176) and non-MDR infection group (n = 233). Univariate and multivariate regression analysis of variables was performed to determine the risk predictors of MDRO infection. RESULTS: The incidence of MDRO infection was 8.6%. Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa were the most common, accounting for 37.3%, 23.5% and 18.0%, respectively. The main infection type were lower respiratory tract infection (LTRI = 29.0%). Univariate analysis showed that underwent coronary artery bypass graft (CABG) (P = 0.001) and secondary operation (P = 0.008), pre-infection exposure to vancomycin (P < 0.001) and linezolid (P = 0.002), combination antibiotics (P < 0.001), four antibiotics in combination (P = 0.005), glucocorticoid use (P = 0.029), preoperative hypoalbuminemia (P = 0.003) were risk factors for post-operative MDRO infection. Multivariate regression analysis showed that underwent CABG (OR = 1.228, 95%CI = 1.056∽1.427, P = 0.008), secondary operation (OR = 1.910, 95%CI = 1.131∽3.425, P = 0.015) and pre-infection exposure to linezolid (OR = 3.704, 95%CI = 1.291∽10.629, P = 0.005) were independent risk predictors for MDRO infection. The risk of MDRO infection increased with the length of stay in the ICU (P < 0.001) and the length of stay before diagnosis of infection (P = 0.003), and the difference was statistically significant. Meanwhile, the length of stay after infection (P = 0.005) and the total length of hospital stay (P < 0.001) were significantly longer in the MDRO infection group, and the all-cause mortality was numerically higher in the MDRO infection group (31.3% versus 23.2%). CONCLUSIONS: The morbidity and mortality of MDRO infection was high in adult cardiac surgery, and many risk factors influence the occurrence of MDRO infection. In the future, clinicians should focus on high-risk patients, strengthen multidisciplinary collaboration on infection prevention and control measures, reduce the morbidity and mortality of MDRO infection, and improve the prognosis of in-hospital patients.


Assuntos
Infecções Bacterianas , Procedimentos Cirúrgicos Cardíacos , Humanos , Adulto , Farmacorresistência Bacteriana Múltipla , Linezolida , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Pacientes Internados , Fatores de Risco , Antibacterianos/uso terapêutico
5.
Water Res ; 244: 120506, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37651863

RESUMO

Fe(VI) is a versatile agent for water purification, and various strategies have been developed to improve its pollutant removal efficiency. Herein, it was found that in addition to intermediate iron species [Fe(IV)/Fe(V)], direct electron transfer (DET) played a significant role in the abatement of organic pollutants in Fe(VI)/carbon quantum dots (CQDs) system. Around 86, 83, 73, 64, 52, 45 and 17% of BPA, DCF, SMX, 4-CP, phenol, p-HBA, and IBP (6 µM) could be oxidized by 30 µM of Fe(VI), whereas with the addition of CQDs (4 mg/L), the oxidation ratio of these pollutants increased to 98, 99, 80, 88, 87, 66 and 57%, respectively. The negative impact induced by solution pH and background constituents on Fe(VI) abatement of pollutants could be alleviated by CQDs, and CQDs acted as catalysts for mediating DET from organic pollutants to Fe(VI). Theoretical calculation revealed that iron species [Fe(VI)/Fe(V)/Fe(IV)] was responsible for the oxidation of 36% of phenol, while DET contributed to the oxidation of 64% of phenol in the Fe(VI)/CQDs system. Compared with iron species oxidation, the CQDs mediated DET from pollutants to Fe(VI) was more efficient for utilizing the oxidation capacity of Fe(VI). The DET mechanism presented in the study provides a prospective strategy for improving the pollution control potential of Fe(VI).


Assuntos
Poluentes Ambientais , Elétrons , Fenol , Fenóis , Carbono , Ferro
6.
Oncol Lett ; 25(5): 190, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37065782

RESUMO

Macrophages are abundant in tumor tissues, and they affect the biological properties of tumor cells. The present findings indicated that osteosarcoma (OS) has a high proportion of tumor-promoting M2 macrophages. The CD47 protein can aid tumor cells in their immunological escape. It was identified that CD47 protein is abundant in both clinical OS tissues and OS cell lines. Lipopolysaccharide (LPS) is an activator of Toll-like receptor 4 present on the surface of macrophages, and it induces the polarization towards a pro-inflammatory phenotype; and macrophages of pro-inflammatory phenotype may present antitumor potential. CD47 monoclonal antibody (CD47mAb) can block the CD47-SIRPα signaling pathway, thus enhancing the antitumor ability of macrophages. Immunofluorescence staining confirmed that OS was rich in CD47 protein and M2 macrophages. In the present study, the antitumor potential of macrophages activated using LPS combined with the CD47mAb was assessed. LPS combined with CD47mAb greatly improved macrophages' capacity to phagocytize OS cells, according to the laser confocal experiments and flow cytometry. Furthermore, cell proliferation analysis, cell migration assay and apoptosis determination confirmed LPS-polarized macrophages might efficiently suppress OS cells growth and migration while promoting apoptosis. Taken together, the results of present study demonstrated that LPS combined with CD47mAb enhanced the anti-osteosarcoma ability of macrophages.

7.
J Bone Joint Surg Am ; 105(10): 779-788, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-36947666

RESUMO

BACKGROUND: The high incidence of incomplete or failed healing after rotator cuff repair (RCR) has led to an increased focus on the biologic factors that affect tendon-to-bone healing. Inflammation plays a critical role in the initial tendon-healing response. C-C chemokine receptor type 2 (CCR2) is a chemokine receptor linked to the recruitment of monocytes in early inflammatory stages and is associated with an increase in pro-inflammatory macrophages. The purpose of this study was to evaluate the role of CCR2 in tendon healing following RCR in C57BL/6J wildtype (WT) and CCR2-/- knockout (CCR2KO) mice in a delayed RCR model. METHODS: Fifty-two 12-week-old, male mice were allocated to 2 groups (WT and CCR2KO). All mice underwent unilateral supraspinatus tendon (SST) detachment at the initial surgical procedure, followed by a delayed repair 2 weeks later. The primary outcome measure was biomechanical testing. Secondary measures included histology, gene expression analysis, flow cytometry, and gait analysis. RESULTS: The mean load-to-failure was 1.64 ± 0.41 N in the WT group and 2.50 ± 0.42 N in the CCR2KO group (p = 0.030). The mean stiffness was 1.43 ± 0.66 N/mm in the WT group and 3.00 ± 0.95 N/mm in the CCR2KO group (p = 0.008). Transcriptional profiling demonstrated 7 differentially expressed genes (DEGs) when comparing the CCR2KO and WT groups (p < 0.05) and significant differences in Type-I and Type-II interferon pathway scores (p < 0.01). Flow cytometry demonstrated significant differences between groups for the percentage of macrophages present (8.1% for the WT group compared with 5.8% for the CCR2KO group; p = 0.035). Gait analysis demonstrated no significant differences between groups. CONCLUSIONS: CCR2KO may potentially improve tendon biomechanical properties by decreasing macrophage infiltration and/or by suppressing inflammatory mediator pathways in the setting of delayed RCR. CLINICAL RELEVANCE: CCR2 may be a promising target for novel therapeutics that aim to decrease failure rates following RCR.


Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Masculino , Camundongos , Animais , Manguito Rotador/cirurgia , Manguito Rotador/fisiologia , Lesões do Manguito Rotador/cirurgia , Cicatrização/fisiologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Tendões/metabolismo , Fenômenos Biomecânicos , Receptores CCR2/genética , Receptores CCR2/metabolismo
8.
Environ Sci Technol ; 57(6): 2527-2537, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36725089

RESUMO

Manganese ion [Mn(II)] is a background constituent existing in natural waters. Herein, it was found that only 59% of bisphenol A (BPA), 47% of bisphenol F (BPF), 65% of acetaminophen (AAP), and 49% of 4-tert-butylphenol (4-tBP) were oxidized by 20 µM of Fe(VI), while 97% of BPA, 95% of BPF, 96% of AAP, and 94% of 4-tBP could be oxidized by the Fe(VI)/Mn(II) system [20 µM Fe(VI)/20 µM Mn(II)] at pH 7.0. Further investigations showed that bisphenol S (BPS) was highly reactive with reactive iron species (RFeS) but was sluggish with reactive manganese species (RMnS). By using BPS and methyl phenyl sulfoxide (PMSO) as the probe compounds, it was found that reactive iron species contributed primarily for BPA oxidation at low Mn(II)/Fe(VI) molar ratios (below 0.1), while reactive manganese species [Mn(VII)/Mn(III)] contributed increasingly for BPA oxidation with the elevation of the Mn(II)/Fe(VI) molar ratio (from 0.1 to 3.0). In the interaction of Mn(II) and Fe(VI), the transfer of oxidation capacity from Fe(VI) to Mn(III), including the formation of Mn(VII) and the inhibition of Fe(VI) self-decay, improved the amount of electron equivalents per Fe(VI) for BPA oxidation. UV-vis spectra and dominant transformation product analysis further revealed the evolution of iron and manganese species at different Mn(II)/Fe(VI) molar ratios.


Assuntos
Manganês , Poluentes Químicos da Água , Manganês/química , Ferro/química , Oxirredução , Poluentes Químicos da Água/química
9.
Microbiol Spectr ; : e0523122, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847569

RESUMO

Polymyxin has been the last resort to treat multidrug-resistant Klebsiella pneumonia. However, recent studies have revealed that polymyxin-resistant carbapenem-resistant Klebsiella pneumonia (PR-CRKP) emerged due to the mutations in chromosomal genes or the plasmid-harboring mcr gene, leading to lipopolysaccharide modification or efflux of polymyxin through pumps. Further surveillance was required. In the present study we collected PR-CRKP strains from 8 hospitals in 6 provinces/cities across China to identify the carbapenemase and polymyxin resistance genes and epidemiological features by whole-genome sequencing (WGS). The broth microdilution method (BMD) was performed to determine the MIC of polymyxin. Of 662 nonduplicate CRKP strains, 15.26% (101/662) were defined as PR-CRKP; 10 (9.90%) were confirmed as Klebsiella quasipneumoniae by WGS. The strains were further classified into 21 individual sequence types (STs) by using multilocus sequence typing (MLST), with ST11 being prevalent (68/101, 67.33%). Five carbapenemase types were identified among 92 CR-PRKP, blaKPC-2 (66.67%), blaNDM-1 (16.83%), blaNDM-5 (0.99%), blaIMP-4 (4.95%), and blaIMP-38 (0.99%). Notably, 2 PR-CRKP strains harbored both blaKPC-2 and blaNDM-1. The inactivation of mgrB, associated significantly with high-level polymyxin resistance, was mainly caused by the insertion sequence (IS) insertion (62.96%, 17/27). Furthermore, acrR was inserted coincidently by ISkpn26 (67/101, 66.33%). The deletion or splicing mutations of crrCAB were significantly associated with ST11 and KL47 (capsule locus types), and diverse mutations of the ramR gene were identified. Only one strain carried the mcr gene. In summary, the high IS-inserted mgrB inactivation, the close relationship between ST11 and the deletion or splicing mutations of the crrCAB, and the specific features of PR-K. quasipneumoniae constituted notable features of our PR-CRKP strains in China. IMPORTANCE Polymyxin-resistant CRKP is a serious public health threat whose resistance mechanisms should be under continuous surveillance. Here, we collected 662 nonduplicate CRKP strains across China to identify the carbapenemase and polymyxin resistance genes and epidemiological features. Polymyxin resistance mechanism in 101 PR-CRKP strains in China were also investigated, 9.8% of which (10/101) were K. quasipneumoniae, as determined via WGS, and inactivation of mgrB remained the most crucial polymyxin resistance mechanism, significantly related to high-level resistance. Deletion or splicing mutations of crrCAB were significantly associated with ST11 and KL47. Diverse mutations of the ramR gene were identified. The plasmid complementation experiment and mRNA expression analysis further confirmed that the mgrB promoter and ramR played a critical role in polymyxin resistance. This multicenter study contributed to the understanding of antibiotic resistance forms in China.

10.
Chemosphere ; 321: 137983, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739987

RESUMO

Microbes play a dominant role for the transformation of organic contaminants in the environment, while a significant gap exists in understanding the degradation mechanism and the function of different species. Herein, the possible bio-degradation of triclosan in microbial fuel cell was explored, with the investigation of degradation kinetics, microbial community, and possible degradation products. 5 mg/L of triclosan could be degraded within 3 days, and an intermediate degradation product (2,4-dichlorophen) could be further degraded in system. 32 kinds of dominant bacteria (relative intensity >0.5%) were identified in the biofilm, and 10 possible degradation products were identified. By analyzing the possible involved bioreactions (including decarboxylation, dehalogenation, dioxygenation, hydrolysis, hydroxylation, and ring-cleavage) of the dominant bacteria and possible degradation pathway of triclosan based on the identified products, biodegradation mechanism and function of the bacteria involved in the degradation of triclosan was clarified simultaneously. This study provides useful information for further interpreting the degradation mechanism of organic pollutants in mixed flora by combining analysis microbiome community and degradation pathway.


Assuntos
Fontes de Energia Bioelétrica , Microbiota , Triclosan , Triclosan/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo
11.
Allergol Immunopathol (Madr) ; 51(1): 140-145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36617833

RESUMO

OBJECTIVE: To unravel the role of La ribonucleoprotein 7 (LARP7), a transcriptional regulator, in the progression of psoriasis and the underlying molecular mechanisms. METHODS: The psoriasis-like mice model was created by daily administering of imiquimod on shaved skin. The histological analysis and skin damage were evaluated in each group. The inflammation and oxidative stress response were assessed by enzyme-linked-immunosorbent serologic and immunoblot assays. The involvement of silent information regulator 1 (member of the Sirtuin family; SIRT1/nuclear factor kappa B (NF-κB) signaling pathway in LARP7-mediated psoriasis progression was also detected by immunoblot assay. RESULTS: LARP7 relieved psoriasis symptoms in the mice model. LARP7 inhibited the expression of inflammatory cytokines as well as chemokines in psoriasis-like skin tissues. Additionally, LARP7 suppressed oxidative stress in the psoriasis-like skin tissues of mice. LARP7 inhibited the activation of the SIRT1/NF-κB signaling pathway, and therefore affected the progression of psoriasis. CONCLUSION: LARP7 relieved psoriasis symptoms in mice by regulating the SIRT1/NF-κB signaling pathway.


Assuntos
NF-kappa B , Psoríase , Proteínas de Ligação a RNA , Sirtuína 1 , Animais , Camundongos , NF-kappa B/metabolismo , Psoríase/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Pele/patologia , Proteínas de Ligação a RNA/metabolismo
12.
J Orthop Res ; 41(8): 1697-1708, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36691866

RESUMO

The standard grafts used for anterior cruciate ligament (ACL) reconstruction are tendon, either patellar tendon, hamstring, or quadriceps. However, the microstructure and composition of tendon differs from ligament. Ideally, the ACL would be replaced with the same tissue. To evaluate the incorporation of a bone-ACL-bone (B-ACL-B) graft for ACL reconstruction, we performed a controlled laboratory study in a rabbit model with microcomputed tomography (µCT). Forty-six New Zealand white rabbits were used, with 17 donor rabbits to harvest bilateral B-ACL-B allografts and 29 rabbits undergoing unilateral ACL reconstruction with B-ACL-B allograft. Knee specimens were collected for biomechanical testing (n = 14) at 4 and 8 weeks and for µCT analysis (n = 15) at 2, 4, and 8 weeks after surgery. Gross inspection and µCT examination confirmed bone blocks in the appropriate anatomic position. Biomechanical tests revealed no difference in mean load-to-failure force for B-ACL-B allografts between 4 and 8 weeks. Progressive healing occurred between the bone block and the tunnel as demonstrated by a gradual increase on average bone-volume fraction and total mineral density (TMD) in both femoral and tibial tunnels. Remodeling of the bone block was evidenced by a significant decrease in TMD of both tibial and femoral bone blocks. This is a report of a novel rabbit B-ACL-B allograft reconstruction model demonstrating early signs of graft remodeling and incorporation. Clinical Relevance: This study demonstrates ACL reconstruction using an anatomically matched ACL allograft, rather than a tendon graft, may be possible based on early findings in this lapine model.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Coelhos , Animais , Ligamento Cruzado Anterior/diagnóstico por imagem , Ligamento Cruzado Anterior/cirurgia , Microtomografia por Raio-X , Articulação do Joelho/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Aloenxertos , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/cirurgia
13.
J Hazard Mater ; 447: 130759, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36641843

RESUMO

Development of robust, reactive, and inexpensive catalyst for pollutants abatement with catalytic ozonation is of great significance. Herein, the effect of a robust and easy-recovery catalyst, Fe2O3/Al2O3-SiC, for the catalytic ozonation of hardly biodegradable COD (hard COD) in coking wastewater had been explored. Al-O-Si bond formed on modified SiC through the substitution of hydrogen in surficial Si-OH groups by Al3+. The Lewis acid sites improved the adsorption of ozone and facilitated the formation of ·OH and O2·-. For coking wastewater treatment, the removal ratio of hard COD and the generation speed of hydroxyl radical (Rct) in the catalytic ozonation process were 71% and 253% higher than those in the ozonation group, respectively. Ozone utilization increased from 0.44 g COD removed/g O3 in the ozonation group to 1.42 g COD removed/g O3 in the Fe2O3/Al2O3-SiC catalytic ozonation group. In a full-scale application, Fe2O3/Al2O3-SiC catalytic ozonation decreased the consumption of O3 to 60 mg L-1 and decreased the operation cost by 50%. These results provided an approachable way for sharing the extraordinary capacity of ozone for contaminants remediation in industrial applications.

14.
Sensors (Basel) ; 23(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617140

RESUMO

Optical fiber biosensors (OFBS) are being increasingly proposed due to their intrinsic advantages over conventional sensors, including their compactness, potential remote control and immunity to electromagnetic interference. This review systematically introduces the advances of OFBS based on long-period fiber gratings (LPFGs) for chemical and biomedical applications from the perspective of design and functionalization. The sensitivity of such a sensor can be enhanced by designing the device working at or near the dispersion turning point, or working around the mode transition, or their combination. In addition, several common functionalization methods are summarized in detail, such as the covalent immobilization of 3-aminopropyltriethoxysilane (APTES) silanization and graphene oxide (GO) functionalization, and the noncovalent immobilization of the layer-by-layer assembly method. Moreover, reflective LPFG-based sensors with different configurations have also been introduced. This work aims to provide a comprehensive understanding of LPFG-based biosensors and to suggest some future directions for exploration.


Assuntos
Técnicas Biossensoriais , Fibras Ópticas
15.
Environ Sci Technol ; 57(2): 1103-1113, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36574338

RESUMO

Anthracite is globally used as a filter material for water purification. Herein, it was found that up to 15 disinfection byproducts (DBPs) were formed in the chlorination of anthracite-filtered pure water, while the levels of DBPs were below the detection limit in the chlorination of zeolite-, quartz sand-, and porcelain sandstone-filtered pure water. In new-anthracite-filtered water, the levels of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and ammonia nitrogen (NH3-N) ranged from 266.3 to 305.4 µg/L, 37 to 61 µg/L, and 8.6 to 17.1 µg/L, respectively. In aged anthracite (collected from a filter at a DWTP after one year of operation) filtered water, the levels of the above substances ranged from 475.1 to 597.5 µg/L, 62.1 to 125.6 µg/L, and 14 to 28.9 µg/L, respectively. Anthracite would release dissolved substances into filtered water, and aged anthracite releases more substances than new anthracite. The released organics were partly (around 5%) composed by the µg/L level of toxic and carcinogenic aromatic carbons including pyridine, paraxylene, benzene, naphthalene, and phenanthrene, while over 95% of the released organics could not be identified. Organic carbon may be torn off from the carbon skeleton structure of anthracite due to hydrodynamic force in the water filtration process.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Água Potável/análise , Água Potável/química , Desinfecção , Cloro , Carvão Mineral , Cloretos , Carbono , Halogenação , Poluentes Químicos da Água/análise , Desinfetantes/análise
16.
Sci Total Environ ; 864: 161080, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36574852

RESUMO

Ferrate(VI) is a green oxidant and can effectively oxidize micropollutants. However, the instability of Fe(VI), i.e., self-decomposition, in the aqueous solution limited its application. Herein, it was found that the degradation of phenolic substances had been substantially improved through the combination of Fe(VI) with NaClO. At the condition of pH 8.0, 50 µM of Fe(VI) degraded 18.66 % of BPA (bisphenol A) at 0.5 min or 21.67 % of phenol at 2 min. By contrast, Fe(VI)/NaClO (50/10 µM) oxidized 38.21 % of BPA at 0.5 min or 38.08 % of phenol at 2 min with a synergistic effect. At the end of the reaction, the concentration of Fe(VI) in Fe(VI)/NaClO (50/10 µM) was 28.97 µM for BPA degradation, higher than the 25.62 µM of Fe(VI) group. By active species analysis, intermediate iron species [i.e., Fe(V) and Fe(IV)] played a vital role in the synergistic effect in Fe(VI)/NaClO system, which would react with the applied NaClO to regenerate Fe(VI). In natural water, the Fe(VI)/NaClO could also degrade phenolic substances of natural organic matter (NOM). Although the NaClO reagent was applied, disinfection by-products (DBPs) formation potential decreased by 22.75 % of the raw sample after Fe(VI)/NaClO treatment. Significantly, THMs, mainly caused by phenolic substances of NOM, even declined by 29.18 % of raw sample. Based on that, this study explored a novel ferrate(VI) oxidation system using the cheap NaClO reagent, which would present a new insight on ferrate(VI) application.

18.
Environ Sci Technol ; 56(22): 16104-16114, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36322125

RESUMO

Toxic and odorous iodophenols are commonly identified as disinfection by-products (DBPs) in drinking water. Herein, ng/L levels of iodophenols were identified in river water, wastewater treatment plant effluent, and medical wastewater, with the simultaneous identification of µg/L to mg/L levels of iodide (I-) and total organic iodine (TOI). Oxidation experiment suggested that the I-, TOI, and iodophenols could be oxidized by ferrate [Fe(VI)], and more than 97% of TOI had been transformed into stable and nontoxic IO3-. Fe(VI) initially cleaved the C-I bond of iodophenols and led to the deiodination of iodophenols. The resulted I- was swiftly oxidized into HOI and IO3-, with the intermediate phenolic products be further oxidized into lower molecular weight products. The Gibbs free energy change (ΔG) of the overall reaction was negative, indicating that the deiodination of iodophenols by Fe(VI) was spontaneous. In the disinfection of iodine-containing river water, ng/L levels of iodophenols and chloro-iodophenols formed in the reaction with NaClO/NH2Cl, while Fe(VI) preoxidation was effective for inhibiting the formation of iodinated DBPs. Fe(VI) exhibited multiple functions for oxidizing organic iodine, abating their acute toxicity/cytotoxicity and controlling the formation of iodinated DBPs for the treatment of iodide/organic iodine-containing waters.


Assuntos
Desinfetantes , Água Potável , Iodo , Poluentes Químicos da Água , Purificação da Água , Iodetos , Halogenação , Poluentes Químicos da Água/química , Purificação da Água/métodos , Desinfecção/métodos
19.
Opt Lett ; 47(14): 3427-3430, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838696

RESUMO

Time-gated luminescence spectra are usually measured by laboratory instruments equipped with high-speed excitation sources and spectrometers, which are always bulky and expensive. To reduce the reliance on expensive laboratory instruments, we demonstrate the first, to the best of our knowledge, use of a smartphone for the detection of time-gated luminescence spectra. A mechanical chopper is used as the detection shutter and an optical switch is placed at the edge of the wheel to convert the chopping signal into a transistor-transistor logic (TTL) signal which is used to control the excitation source and achieve synchronization. The time-gated luminescence spectra at different delay times of Eu(TTA)3 powder and the solutions of Eu-tetracycline complex are successfully detected with a temporal resolution of tens of microseconds by the proposed approach. We believe our approach offers a route toward portable instruments for the measurement of luminescence spectra and lifetimes.


Assuntos
Luminescência , Smartphone , Análise Espectral
20.
J Hazard Mater ; 433: 128819, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35381510

RESUMO

Carbon materials draw increasing attention as metal-free catalysts for persulfates activation. Herein, the potential of black carbon (BC) derived from coal tar residues on heterogeneous activation of peroxydisulfate (PDS) and peroxymonosulfate (PMS) to eliminate organic pollutants was investigated. Compared with UV/persulfates systems, persulfates/BC systems degraded 3 selected phenolic compounds (i.e. phenol, 4-chlorophenol (4-CP) and bisphenol A (BPA)) with an order of magnitude higher oxidation rates, and removed dissolved organics (DOC) with over 27% higher efficiency. In the PDS/BC system, 1O2 and surface-bound radicals were proved to be the dominant active species, while free radicals, 1O2, and surface-bound radicals were responsible for organics oxidation in the PMS/BC system. Relative contribution of different reactive species in persulfates/BC systems was pH-dependent. Surface oxygen functionalities of BC were involved in 1O2 generation, and its structural defects played a critical role in forming free radicals and surface-bound radicals. This study provided an in-depth insight into carbon-driven persulfates activation processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA